3.382 \(\int \frac{x \tanh ^{-1}(a x)^3}{\sqrt{1-a^2 x^2}} \, dx\)

Optimal. Leaf size=128 \[ -\frac{6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,-i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \text{PolyLog}\left (3,-i e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{6 i \text{PolyLog}\left (3,i e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}+\frac{6 \tanh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right )}{a^2} \]

[Out]

(6*ArcTan[E^ArcTanh[a*x]]*ArcTanh[a*x]^2)/a^2 - (Sqrt[1 - a^2*x^2]*ArcTanh[a*x]^3)/a^2 - ((6*I)*ArcTanh[a*x]*P
olyLog[2, (-I)*E^ArcTanh[a*x]])/a^2 + ((6*I)*ArcTanh[a*x]*PolyLog[2, I*E^ArcTanh[a*x]])/a^2 + ((6*I)*PolyLog[3
, (-I)*E^ArcTanh[a*x]])/a^2 - ((6*I)*PolyLog[3, I*E^ArcTanh[a*x]])/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.176988, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {5994, 5952, 4180, 2531, 2282, 6589} \[ -\frac{6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,-i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \text{PolyLog}\left (3,-i e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{6 i \text{PolyLog}\left (3,i e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}+\frac{6 \tanh ^{-1}(a x)^2 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right )}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[(x*ArcTanh[a*x]^3)/Sqrt[1 - a^2*x^2],x]

[Out]

(6*ArcTan[E^ArcTanh[a*x]]*ArcTanh[a*x]^2)/a^2 - (Sqrt[1 - a^2*x^2]*ArcTanh[a*x]^3)/a^2 - ((6*I)*ArcTanh[a*x]*P
olyLog[2, (-I)*E^ArcTanh[a*x]])/a^2 + ((6*I)*ArcTanh[a*x]*PolyLog[2, I*E^ArcTanh[a*x]])/a^2 + ((6*I)*PolyLog[3
, (-I)*E^ArcTanh[a*x]])/a^2 - ((6*I)*PolyLog[3, I*E^ArcTanh[a*x]])/a^2

Rule 5994

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)
^(q + 1)*(a + b*ArcTanh[c*x])^p)/(2*e*(q + 1)), x] + Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan
h[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1]

Rule 5952

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c*Sqrt[d]), Subs
t[Int[(a + b*x)^p*Sech[x], x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[
p, 0] && GtQ[d, 0]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int \frac{x \tanh ^{-1}(a x)^3}{\sqrt{1-a^2 x^2}} \, dx &=-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}+\frac{3 \int \frac{\tanh ^{-1}(a x)^2}{\sqrt{1-a^2 x^2}} \, dx}{a}\\ &=-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}+\frac{3 \operatorname{Subst}\left (\int x^2 \text{sech}(x) \, dx,x,\tanh ^{-1}(a x)\right )}{a^2}\\ &=\frac{6 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right ) \tanh ^{-1}(a x)^2}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}-\frac{(6 i) \operatorname{Subst}\left (\int x \log \left (1-i e^x\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^2}+\frac{(6 i) \operatorname{Subst}\left (\int x \log \left (1+i e^x\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^2}\\ &=\frac{6 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right ) \tanh ^{-1}(a x)^2}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}-\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (-i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{(6 i) \operatorname{Subst}\left (\int \text{Li}_2\left (-i e^x\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^2}-\frac{(6 i) \operatorname{Subst}\left (\int \text{Li}_2\left (i e^x\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a^2}\\ &=\frac{6 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right ) \tanh ^{-1}(a x)^2}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}-\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (-i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{(6 i) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-i x)}{x} \, dx,x,e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{(6 i) \operatorname{Subst}\left (\int \frac{\text{Li}_2(i x)}{x} \, dx,x,e^{\tanh ^{-1}(a x)}\right )}{a^2}\\ &=\frac{6 \tan ^{-1}\left (e^{\tanh ^{-1}(a x)}\right ) \tanh ^{-1}(a x)^2}{a^2}-\frac{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3}{a^2}-\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (-i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \tanh ^{-1}(a x) \text{Li}_2\left (i e^{\tanh ^{-1}(a x)}\right )}{a^2}+\frac{6 i \text{Li}_3\left (-i e^{\tanh ^{-1}(a x)}\right )}{a^2}-\frac{6 i \text{Li}_3\left (i e^{\tanh ^{-1}(a x)}\right )}{a^2}\\ \end{align*}

Mathematica [A]  time = 0.180252, size = 157, normalized size = 1.23 \[ -\frac{6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,-i e^{-\tanh ^{-1}(a x)}\right )-6 i \tanh ^{-1}(a x) \text{PolyLog}\left (2,i e^{-\tanh ^{-1}(a x)}\right )+6 i \text{PolyLog}\left (3,-i e^{-\tanh ^{-1}(a x)}\right )-6 i \text{PolyLog}\left (3,i e^{-\tanh ^{-1}(a x)}\right )+\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)^3+3 i \tanh ^{-1}(a x)^2 \log \left (1-i e^{-\tanh ^{-1}(a x)}\right )-3 i \tanh ^{-1}(a x)^2 \log \left (1+i e^{-\tanh ^{-1}(a x)}\right )}{a^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*ArcTanh[a*x]^3)/Sqrt[1 - a^2*x^2],x]

[Out]

-((Sqrt[1 - a^2*x^2]*ArcTanh[a*x]^3 + (3*I)*ArcTanh[a*x]^2*Log[1 - I/E^ArcTanh[a*x]] - (3*I)*ArcTanh[a*x]^2*Lo
g[1 + I/E^ArcTanh[a*x]] + (6*I)*ArcTanh[a*x]*PolyLog[2, (-I)/E^ArcTanh[a*x]] - (6*I)*ArcTanh[a*x]*PolyLog[2, I
/E^ArcTanh[a*x]] + (6*I)*PolyLog[3, (-I)/E^ArcTanh[a*x]] - (6*I)*PolyLog[3, I/E^ArcTanh[a*x]])/a^2)

________________________________________________________________________________________

Maple [F]  time = 0.267, size = 0, normalized size = 0. \begin{align*} \int{x \left ({\it Artanh} \left ( ax \right ) \right ) ^{3}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arctanh(a*x)^3/(-a^2*x^2+1)^(1/2),x)

[Out]

int(x*arctanh(a*x)^3/(-a^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \operatorname{artanh}\left (a x\right )^{3}}{\sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctanh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x*arctanh(a*x)^3/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-a^{2} x^{2} + 1} x \operatorname{artanh}\left (a x\right )^{3}}{a^{2} x^{2} - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctanh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*x^2 + 1)*x*arctanh(a*x)^3/(a^2*x^2 - 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \operatorname{atanh}^{3}{\left (a x \right )}}{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*atanh(a*x)**3/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x*atanh(a*x)**3/sqrt(-(a*x - 1)*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \operatorname{artanh}\left (a x\right )^{3}}{\sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctanh(a*x)^3/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x*arctanh(a*x)^3/sqrt(-a^2*x^2 + 1), x)